Category Archives: Economics

On the economics of financial guarantees

In the Credit Risk lecture note and in Problem Set 9, we study how credit enhancement of risky debt works. Examples of credit enhancement in the real world include federal deposit insurance, federally guaranteed student loans, public and private bond insurance, pension insurance, mortgage insurance, government loan guarantees, etc.; the list goes on.

Most credit enhancement schemes work in the following fashion. Creditors loan money to “risky” borrowers who are endowed with risky assets worth $V(F) today (at date = 0).  Borrowers are risky in the sense that they will default (in whole or in part) in the future (at date T) to the extent that $F < $B.  The shortfall to creditors resembles a put option with date payoff of -Max[0, B-F]. Therefore, without credit enhancement, the value of risky debt today (at = 0) is

V(D) = B{e^{ - rT}} - V(Max[0,B - F]).

However, when credit risk is intermediated by a guarantor (e.g., an insurance company or government agency), credit risk gets transferred to the guarantor, who receives an upfront “premium” worth V(Max[0,B - F]) at t=0 in exchange for having to cover a shortfall of Max[0,B - F] which may occur at date T. If all credit risk is transferred to the guarantor (as shown in the graphic provided below), then from the creditors’ perspective it is as if the borrowers have issued riskless debt. Therefore, creditors charge borrowers the riskless rate of interest and are paid back what was promised from two sources: 1) borrowers pay D = B - Max[0,B - F], and 2) the guarantor pays Max[0,B - F].  Therefore, depositors get paid back B - Max[0,B - F] + Max[0,B - F] = B (note: in the picture below, = 1).


Case studies of how (poorly designed) insurance creates moral hazard

During yesterday’s class meeting, we discussed (among other things) how contract designs and pricing strategies can “fix” the moral hazard that insurance might otherwise create. Insurance is “good” to the extent that it enables firms and individuals to manage the risks that they face. However, we also saw insurance has a potential “dark side.” The dark side is that too much insurance and/or incorrectly priced insurance can create moral hazard by insulating firms and individuals from the financial consequences of their decision-making. Thus, in real world insurance markets, we commonly observe partial rather than full insurance coverage. Partial insurance ensures that policyholders have incentives to mitigate risk. Furthermore, real world insurance markets are characterized by pricing strategies such as loss-sensitive premiums (commonly referred to as “experience rated” premiums), as well as premiums that are contingent upon the extent to which policyholders invest in safety.

In competitively structured private insurance markets, we expect that the market price for insurance will (on average) be greater than or equal to its actuarially fair value. Under normal circumstances, one does not expect to observe negative premium loadings in the real world. Negative premium loadings are incompatible with the survival of a private insurance market, since this would imply that insurers are not able to cover capital costs and would, therefore, have incentives not to supply such a market.

Which brings us to the National Flood Insurance Program (NFIP). The NFIP is a federal government insurance program managed by the Federal Emergency Management Agency (also known as “FEMA”). According to Cato senior fellow Doug Bandow’s blog posting entitled “Congress against Budget Reform: Voting to Hike Subsidies for People Who Build in Flood Plains”,

“…the federal government keeps insurance premiums low for people who choose to build where they otherwise wouldn’t. The Congressional Research Service figured that the government charges about one-third of the market rate for flood insurance. The second cost is environmental: Washington essentially pays participants to build on environmentally-fragile lands that tend to flood.”

Thus, the NFIP provides us with a fascinating case study concerning how subsidized flood insurance exacerbates moral hazard (i.e., makes moral hazard even worse) rather than mitigates moral hazard. It does this by encouraging property owners to take risks (in this case, building on environmentally fragile lands that tend to flood) which they otherwise would not be inclined to take if they had to pay the full expected cost of such risks.

There are many other examples of moral hazard created by insurance subsidies. Consider the case of crop insurance provided to farmers by the U.S. Department of Agriculture. The effective premium loading on federally provided crop insurance is typically quite negative (often in excess of -60%), thus putting crop insurance on a similar footing to flood insurance in terms of cost compared with actuarially fair value. Just as mis-priced flood insurance effectively encourages property owners to build in flood plains, mis-priced crop insurance incentivizes farmers to cultivate acreage which may not even be particularly fertile.

I could go on (probably for several hundred more pages – there are innumerable other egregious examples which I could cite), but I think I will stop for now…

Adverse Selection – a definition, some examples, and some solutions.pdf

During tomorrow’s Finance 4335 class meeting, I plan to introduce the topic of adverse selection.  Adverse selection is often referred to as the “hidden information” problem. This concept is particularly easy to understand in an insurance market setting; if you are an insurer, you have to be concerned that the worst possible risks are the ones that want to purchase insurance. However, it is important to note that adverse selection occurs in many market settings other than insurance markets. Adverse selection occurs whenever one party to a contract has superior information compared with his or her counter-party. When this occurs, often the party with the information advantage is tempted to take advantage of the uninformed party.

In an insurance setting, adverse selection is an issue whenever insurers know less about the actual risk characteristics of their policyholders than the policyholders themselves. In lending markets, banks have limited information about their clients’ willingness and ability to pay back on their loan commitments. In the used car market, the seller of a used car has more information about the car that is for sale than potential buyers. In the labor market, employers typically know less than the worker does about his or her abilities. In product markets, the product’s manufacturer often knows more about product failure rates than the consumer, and so forth…

The problem with adverse selection is that if left unchecked, it can undermine the ability of firms and consumers to enter into contractual relationships, and in extreme cases, may even give rise to so-called market failures. For example, in the used car market, since the seller has more information than the buyer about the condition of the vehicle, the buyer cannot help but be naturally suspicious concerning product quality. Consequently, he or she may not be willing to pay as much for the car as it is worth (assuming that it is not a “lemon”). Similarly, insurers may be reticent about selling policies to bad risks, banks may be worried about loaning money to poor credit risks, employers may be concerned about hiring poor quality workers, consumers may be worried about buying poor quality products, and so on…

A number of different strategies exist for mitigating adverse selection. In financial services markets, risk classification represents an important strategy. The reason insurers and banks want to know your credit score is because consumers with bad credit not only often lack the willingness and ability to pay their debts, but they also tend to have more accidents than consumers with good credit. Signaling is used in various settings; for example, one solution to the “lemons” problem in the market for used cars is for the seller to “signal” by providing credible third party certification; e.g., by paying for Carfax reports or vehicle inspections by an independent third party. Students “signal” their quality by selecting a high-quality university (e.g., like Baylor! :-)). Here the university provides potential employers with credible third-party certification concerning the quality of human capital. In product markets, if a manufacturer provides a long-term warranty, this may indicate that quality is better than average.

Sometimes it’s not possible to fully mitigate adverse selection via the methods described above. Thus, insurers commonly employ pricing and contract design strategies which incentivize policyholders to reveal their actual risk characteristics according to their contract choices. Thus, we obtain what’s commonly referred to as a “separating” (Rothschild-Stiglitz) equilibrium in which high-risk insureds select full coverage “high-risk” contracts whereas low-risk insureds select partial coverage “low risk” contracts:


The Rothschild-Stiglitz equilibrium cleverly restricts the menu of available choices in such a way that the insurer induces self-selection. Here, the insurer offers contract L, which involves partial coverage at an actuarially fair price (based upon the loss probability of the low risk insured), and contract H, which provides full coverage at an actuarially fair price (based upon the loss probability of the high risk insured). The differences in the shapes of the indifference curves are due to the different accident probabilities, with a lower accident probability resulting in a more steeply sloped indifference curve. Here, the high-risk policyholder optimally chooses contract H and the low-risk policyholder optimally chooses contract L. The high-risk policyholder prefers H to L because L would represent a point of intersection with a marginally lower indifference curve (here, the Ih curve lies slightly above contract L, which implies that contract H provides the high-risk policyholder with higher expected utility than contract L). The low-risk policyholder will prefer L, but would prefer a full coverage contract at the point of intersection of APl line with the full insurance (45 degrees) line. However, such a contract is not offered since both the low and high-risk policyholders would choose it, and this would cause the insurer to lose money. Thus, one of the inefficiencies related to adverse selection is that insurance opportunities available to low-risk policyholders are limited compared with the world where there is no adverse selection.

There is a very practical implication of this model. If you are a good risk, then you owe it to yourself to select high-deductible insurance, since insurers price low-deductible insurance with the expectation that high-risk policyholders will be the primary purchasers of such coverage (and therefore, low-deductible policies will be more costly per dollar of coverage than high-deductible policies.

Moral Hazard

This Tuesday’s meeting of Finance 4335 will be devoted to a discussion of the concept of moral hazard. In finance, the moral hazard problem is commonly referred to as the “agency” problem. Many, if not most real-world contracts involve two parties – a “principal” and an “agent”. Contracts formed by principals and agents also usually have two key features: 1) the principal delegates some decision-making authority to the agent and 2) the principal and agent decide upon the extent to which they share risk.

The principal has good reason to be concerned whether the agent is likely to take actions that may not be in her best interests. Consequently, the principal has strong incentives to monitor the agent’s actions. However, since it is costly to closely monitor and enforce contracts, some actions can be “hidden” from the principal in the sense that she is not willing to expend the resources necessary to discover them since the costs of discovery may exceed the benefits of obtaining this information. Thus, moral hazard is often described as a problem of “hidden action”.

Since it is not economically feasible to perfectly monitor all of the agent’s actions, the principal needs to be concerned about whether the agent’s incentives line up, or are compatible with the principal’s objectives. This concern quickly becomes reflected in the contract terms defining the formal relationship between the principal and the agent. A contract is said to be incentive compatible if it causes principal and agent incentives to coincide. In other words, actions taken by the agent usually also benefit the principal. In practice, contracts typically scale agent compensation to the benefit received by the principal. Thus, in insurance markets, insurers are not willing to offer full coverage contracts; instead, they offer partial insurance coverage which exposes policyholders to some of the risk that they wish to transfer. In turn, partial coverage reinforces incentives for policyholders to prevent/mitigate loss.

Similarly, in a completely different setting, consider the principal/agent relationship which exists between the owner and manager of a business. If the manager’s effort level is high, then the owner may earn higher profits compared with when the manager’s effort level is low. However, if managerial pay consists of a fixed salary and lacks any form of incentive compensation (e.g., bonuses based upon meeting or beating specific earnings targets), then the manager may be inclined to not exert extra effort, which results in less corporate profit. Thus, compensation contracts can be made more incentive compatible by including performance-based pay in addition to a fixed salary. This way, the owner and manager are both better off because incentives are better aligned.

Synopsis of today’s meeting of Finance 4335

During today’s Finance 4335 class meeting, we compared and contrasted two methods for calculating risk premiums.

Under the so-called “exact” method, one 1) calculates expected utility, 2) sets expected utility equal to the utility of the certainty-equivalent of wealth, 3) solves for the certainty-equivalent of wealth, and 4) obtains the risk premium by calculating the difference between expected wealth and the certainty-equivalent of wealth. On the other hand, the Arrow-Pratt method is an alternative method for calculating the risk premium which is based upon Taylor series approximations of expected utility of wealth and the utility of the certainty equivalent of wealth (the derivation for which appears on pp. 6-8 of Both of these approaches for calculating risk premiums are perfectly acceptable for purposes of Finance 4335.

The value added of Arrow-Pratt is that it analytically demonstrates how risk premiums depend upon two factors: 1) the magnitude of the risk itself (as indicated by variance), and 2) the degree to which the decision-maker is risk averse. For example, we showed in class today that the Arrow-Pratt coefficient for the logarithmic investor (for whom U(W) = ln W) is twice as large as the Arrow-Pratt coefficient for the square root investor (for whom U(W) = W.5); 1/W for the logarithmic investor compared with .5/W for the square root investor. Thus, the logarithmic investor behaves in a more risk averse than the square root investor; other things equal, the logarithmic investor will prefer to allocate less of her wealth to risky assets and buy more insurance than the square root investor. Another important insight yielded by Arrow-Pratt (at least for the utility functions considered so far in Finance 4335) is the notion of decreasing absolute risk aversion (DARA). Other things equal, an investor with DARA preferences become less (more) risk averse as wealth increases (decreases). Furthermore, such an investor increases (reduces) the dollar amount that she is willing to put at risk as she becomes wealthier (poorer).

More on the St. Petersburg Paradox…

During last Thursday’s class meeting, we discussed (among other things) the famous St. Petersburg Paradox. The source for this is Daniel Bernoulli’s famous article entitled “Exposition of a New Theory on the Measurement of Risk“. As was the standard practice in academia at the time, Bernoulli’s article was originally published in Latin in 1738. It was subsequently translated into English in 1954 and published a second time that same year in Econometrica (Volume 22, No. 1): pp. 22–36. Considering that this article was published 280 years ago in an obscure (presumably peer-reviewed) academic journal, it is fairly succinct and surprisingly easy to read.

Also, the Wikipedia article about Bernoulli’s article is worth reading. It provides the mathematics for determining the price at which the apostle Paul would have been indifferent about taking the apostle Peter up on this bet. The original numerical example proposed by Bernoulli focuses attention on Paul’s gamble per se and does not explicitly consider the effect of Paul’s initial wealth on his willingness to pay. However, the quote on page 31 of the article (“… that any reasonable man would sell his chance … for twenty ducats”) implies that Bernoulli may have assumed Paul to be a millionaire, since (as shown in the Wikipedia article) the certainty-equivalent value of this bet to a millionaire who has logarithmic utility comes out to 20.88 ducats.

The Index Fund featured as one of “50 Things That Made the Modern Economy”

Tim Harford also features the index fund in his “Fifty Things That Made the Modern Economy” radio and podcast series. This 9 minute long podcast lays out the history of the development of the index fund in particular and the evolution of so-called of passive portfolio strategies in general. Much of the content of this podcast is sourced from Vanguard founder Jack Bogle’s September 2011 WSJ article entitled “How the Index Fund Was Born” (available at Here’s the description of this podcast:

“Warren Buffett is the world’s most successful investor. In a letter he wrote to his wife, advising her how to invest after he dies, he offers some clear advice: put almost everything into “a very low-cost S&P 500 index fund”. Index funds passively track the market as a whole by buying a little of everything, rather than trying to beat the market with clever stock picks – the kind of clever stock picks that Warren Buffett himself has been making for more than half a century. Index funds now seem completely natural. But as recently as 1976 they didn’t exist. And, as Tim Harford explains, they have become very important indeed – and not only to Mrs Buffett.”

Warren Buffett is one of the world’s great investors. His advice? Invest in an index fund

Insurance featured as one of “50 Things That Made the Modern Economy”

From November 2016 through October 2017, Financial Times writer Tim Harford presented an economic history documentary radio and podcast series called 50 Things That Made the Modern Economy. This same information is available in book under the title “Fifty Inventions That Shaped the Modern Economy“. While I recommend listening to the entire series of podcasts (as well as reading the book), I would like to call your attention to Mr. Harford’s episode on the topic of insurance, which I link below. This 9-minute long podcast lays out the history of the development of the various institutions which exist today for the sharing and trading of risk, including markets for financial derivatives as well as for insurance.

“Legally and culturally, there’s a clear distinction between gambling and insurance. Economically, the difference is not so easy to see. Both the gambler and the insurer agree that money will change hands depending on what transpires in some unknowable future. Today the biggest insurance market of all – financial derivatives – blurs the line between insuring and gambling more than ever. Tim Harford tells the story of insurance; an idea as old as gambling but one which is fundamental to the way the modern economy works.”