Problem Set 6 Hints and Spreadsheet

Problem Set 6 is due at the beginning of class on Thursday, March 7.

In question 1, part C of Problem Set 6, I ask you to “Find the maximum price which the insurer can charge for the coinsurance contract such that profit can still be earned while at the same time providing the typical Florida homeowner with higher expected utility from insuring and retrofitting. How much profit will the insurer earn on a per policy basis?” Here are some hints which you’ll hopefully find helpful.

For starters, keep in mind that in part A, insurance is compulsory (i.e., required by law), whereas, in parts B and C, insurance is not compulsory. In part B of question 1, you are asked to show that the homeowner retrofits while choosing not to purchase insurance. However, in part C, the homeowner might retrofit and purchase coverage if the coinsurance contract is priced more affordably. Therefore, the insurer’s problem is to figure out how much it must reduce the price of the coinsurance contract so that the typical Florida homeowner will have higher expected utility from insuring and retrofitting compared with the part B’s alternative of retrofitting only. It turns out that this is a fairly easy problem to solve using Solver. If you download the spreadsheet located at, you can find the price at which the consumer would be indifferent between buying coinsurance and retrofitting compared with self-insurance and retrofitting. You can determine this “breakeven” price by having Solver set the D28 target cell (which is expected utility for coinsurance with retrofitting) equal to a value of 703.8730 (which is the expected utility of self-insurance and retrofitting) by changing cell D12, which is the premium charged for the coinsurance. Once you have the “breakeven” price, all you have to do to get the homeowner to buy the coinsurance contract is cut its price slightly below that level so that the alternative of coinsurance plus retrofitting is greater than the expected utility of retrofitting only. The insurer’s profit then is simply the difference between the price that motivates the purchase of insurance less the expected claims cost to the insurer (which is $1,250).

Sensitivity analysis of incentive compatible compensation contract

After class today, a Finance 4335 student asked me a particularly interesting question about the class problem; specifically, how much bonus is too much to offer? Clearly (based upon parts 4-5 of this class problem), if the firm is intent on hiring the CEO, then increases in her cost of effort require higher bonuses. For example, if the cost of effort is $200,000, then the minimum bonus comes to $701,038 (compared with a minimum bonus of $429,298 when the cost of effort is only $50,000). Under either of those cost of effort scenarios, the CEO will optimally work hard and expected profits net of CEO compensation (see the section of the spreadsheet labeled “Profit after proposed compensation”) are higher compared with the ‘Go Through Motions” scenario. However, if the CEO’s cost of effort is $500,000 (as it is in part 5), then the bonus comes out to $1,287,876. Even though expected profit net of CEO compensation remains higher under the “Work Hard” scenario, it turns out that the CEO will choose instead to go through the motions rather than work hard, since expected utility is 1,280.73 under ‘Go Through Motions” compared with 1,224.74 under “Work Hard”. In this case, the firm would definitely not want to hire a part 5 CEO and instead find a CEO who has a lower cost of effort (e.g., C = $200,000 or less as shown in parts 2-4).

Case studies of how (poorly designed) insurance creates moral hazard

During yesterday’s class meeting, we discussed (among other things) how contract designs and pricing strategies can “fix” the moral hazard that insurance might otherwise create. Insurance is “good” to the extent that it enables firms and individuals to manage the risks that they face. However, we also saw insurance has a potential “dark side.” The dark side is that too much insurance and/or incorrectly priced insurance can create moral hazard by insulating firms and individuals from the financial consequences of their decision-making. Thus, in real world insurance markets, we commonly observe partial rather than full insurance coverage. Partial insurance ensures that policyholders have incentives to mitigate risk. Furthermore, real world insurance markets are characterized by pricing strategies such as loss-sensitive premiums (commonly referred to as “experience rated” premiums), as well as premiums that are contingent upon the extent to which policyholders invest in safety.

In competitively structured private insurance markets, we expect that the market price for insurance will (on average) be greater than or equal to its actuarially fair value. Under normal circumstances, one does not expect to observe negative premium loadings in the real world. Negative premium loadings are incompatible with the survival of a private insurance market, since this would imply that insurers are not able to cover capital costs and would, therefore, have incentives not to supply such a market.

Which brings us to the National Flood Insurance Program (NFIP). The NFIP is a federal government insurance program managed by the Federal Emergency Management Agency (also known as “FEMA”). According to Cato senior fellow Doug Bandow’s blog posting entitled “Congress against Budget Reform: Voting to Hike Subsidies for People Who Build in Flood Plains”,

“…the federal government keeps insurance premiums low for people who choose to build where they otherwise wouldn’t. The Congressional Research Service figured that the government charges about one-third of the market rate for flood insurance. The second cost is environmental: Washington essentially pays participants to build on environmentally-fragile lands that tend to flood.”

Thus, the NFIP provides us with a fascinating case study concerning how subsidized flood insurance exacerbates moral hazard (i.e., makes moral hazard even worse) rather than mitigates moral hazard. It does this by encouraging property owners to take risks (in this case, building on environmentally fragile lands that tend to flood) which they otherwise would not be inclined to take if they had to pay the full expected cost of such risks.

There are many other examples of moral hazard created by insurance subsidies. Consider the case of crop insurance provided to farmers by the U.S. Department of Agriculture. The effective premium loading on federally provided crop insurance is typically quite negative (often in excess of -60%), thus putting crop insurance on a similar footing to flood insurance in terms of cost compared with actuarially fair value. Just as mis-priced flood insurance effectively encourages property owners to build in flood plains, mis-priced crop insurance incentivizes farmers to cultivate acreage which may not even be particularly fertile.

I could go on (probably for several hundred more pages – there are innumerable other egregious examples which I could cite), but I think I will stop for now…

Adverse Selection – a definition, some examples, and some solutions.pdf

During tomorrow’s Finance 4335 class meeting, I plan to introduce the topic of adverse selection.  Adverse selection is often referred to as the “hidden information” problem. This concept is particularly easy to understand in an insurance market setting; if you are an insurer, you have to be concerned that the worst possible risks are the ones that want to purchase insurance. However, it is important to note that adverse selection occurs in many market settings other than insurance markets. Adverse selection occurs whenever one party to a contract has superior information compared with his or her counter-party. When this occurs, often the party with the information advantage is tempted to take advantage of the uninformed party.

In an insurance setting, adverse selection is an issue whenever insurers know less about the actual risk characteristics of their policyholders than the policyholders themselves. In lending markets, banks have limited information about their clients’ willingness and ability to pay back on their loan commitments. In the used car market, the seller of a used car has more information about the car that is for sale than potential buyers. In the labor market, employers typically know less than the worker does about his or her abilities. In product markets, the product’s manufacturer often knows more about product failure rates than the consumer, and so forth…

The problem with adverse selection is that if left unchecked, it can undermine the ability of firms and consumers to enter into contractual relationships, and in extreme cases, may even give rise to so-called market failures. For example, in the used car market, since the seller has more information than the buyer about the condition of the vehicle, the buyer cannot help but be naturally suspicious concerning product quality. Consequently, he or she may not be willing to pay as much for the car as it is worth (assuming that it is not a “lemon”). Similarly, insurers may be reticent about selling policies to bad risks, banks may be worried about loaning money to poor credit risks, employers may be concerned about hiring poor quality workers, consumers may be worried about buying poor quality products, and so on…

A number of different strategies exist for mitigating adverse selection. In financial services markets, risk classification represents an important strategy. The reason insurers and banks want to know your credit score is because consumers with bad credit not only often lack the willingness and ability to pay their debts, but they also tend to have more accidents than consumers with good credit. Signaling is used in various settings; for example, one solution to the “lemons” problem in the market for used cars is for the seller to “signal” by providing credible third party certification; e.g., by paying for Carfax reports or vehicle inspections by an independent third party. Students “signal” their quality by selecting a high-quality university (e.g., like Baylor! :-)). Here the university provides potential employers with credible third-party certification concerning the quality of human capital. In product markets, if a manufacturer provides a long-term warranty, this may indicate that quality is better than average.

Sometimes it’s not possible to fully mitigate adverse selection via the methods described above. Thus, insurers commonly employ pricing and contract design strategies which incentivize policyholders to reveal their actual risk characteristics according to their contract choices. Thus, we obtain what’s commonly referred to as a “separating” (Rothschild-Stiglitz) equilibrium in which high-risk insureds select full coverage “high-risk” contracts whereas low-risk insureds select partial coverage “low risk” contracts:


The Rothschild-Stiglitz equilibrium cleverly restricts the menu of available choices in such a way that the insurer induces self-selection. Here, the insurer offers contract L, which involves partial coverage at an actuarially fair price (based upon the loss probability of the low risk insured), and contract H, which provides full coverage at an actuarially fair price (based upon the loss probability of the high risk insured). The differences in the shapes of the indifference curves are due to the different accident probabilities, with a lower accident probability resulting in a more steeply sloped indifference curve. Here, the high-risk policyholder optimally chooses contract H and the low-risk policyholder optimally chooses contract L. The high-risk policyholder prefers H to L because L would represent a point of intersection with a marginally lower indifference curve (here, the Ih curve lies slightly above contract L, which implies that contract H provides the high-risk policyholder with higher expected utility than contract L). The low-risk policyholder will prefer L, but would prefer a full coverage contract at the point of intersection of APl line with the full insurance (45 degrees) line. However, such a contract is not offered since both the low and high-risk policyholders would choose it, and this would cause the insurer to lose money. Thus, one of the inefficiencies related to adverse selection is that insurance opportunities available to low-risk policyholders are limited compared with the world where there is no adverse selection.

There is a very practical implication of this model. If you are a good risk, then you owe it to yourself to select high-deductible insurance, since insurers price low-deductible insurance with the expectation that high-risk policyholders will be the primary purchasers of such coverage (and therefore, low-deductible policies will be more costly per dollar of coverage than high-deductible policies.

Moral Hazard

This Tuesday’s meeting of Finance 4335 will be devoted to a discussion of the concept of moral hazard. In finance, the moral hazard problem is commonly referred to as the “agency” problem. Many, if not most real-world contracts involve two parties – a “principal” and an “agent”. Contracts formed by principals and agents also usually have two key features: 1) the principal delegates some decision-making authority to the agent and 2) the principal and agent decide upon the extent to which they share risk.

The principal has good reason to be concerned whether the agent is likely to take actions that may not be in her best interests. Consequently, the principal has strong incentives to monitor the agent’s actions. However, since it is costly to closely monitor and enforce contracts, some actions can be “hidden” from the principal in the sense that she is not willing to expend the resources necessary to discover them since the costs of discovery may exceed the benefits of obtaining this information. Thus, moral hazard is often described as a problem of “hidden action”.

Since it is not economically feasible to perfectly monitor all of the agent’s actions, the principal needs to be concerned about whether the agent’s incentives line up, or are compatible with the principal’s objectives. This concern quickly becomes reflected in the contract terms defining the formal relationship between the principal and the agent. A contract is said to be incentive compatible if it causes principal and agent incentives to coincide. In other words, actions taken by the agent usually also benefit the principal. In practice, contracts typically scale agent compensation to the benefit received by the principal. Thus, in insurance markets, insurers are not willing to offer full coverage contracts; instead, they offer partial insurance coverage which exposes policyholders to some of the risk that they wish to transfer. In turn, partial coverage reinforces incentives for policyholders to prevent/mitigate loss.

Similarly, in a completely different setting, consider the principal/agent relationship which exists between the owner and manager of a business. If the manager’s effort level is high, then the owner may earn higher profits compared with when the manager’s effort level is low. However, if managerial pay consists of a fixed salary and lacks any form of incentive compensation (e.g., bonuses based upon meeting or beating specific earnings targets), then the manager may be inclined to not exert extra effort, which results in less corporate profit. Thus, compensation contracts can be made more incentive compatible by including performance-based pay in addition to a fixed salary. This way, the owner and manager are both better off because incentives are better aligned.

Finance 4335